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ABSTRACT 
 
A general framework is proposed to study the unsteady behaviour of nonconforming grid interface between 
two structured blocks. Using the Finite Volume Method, a two-dimensional spectral analysis is performed for 
a second order centred scheme to compare with solutions obtained by the elsA software. The 
nonconforming grid interface makes possible to coarse/refine each block, which is not without effect on both 
stability and accuracy of the unsteady solution. High coarsening is responsible for instabilities in the form of 
reflection of high-frequency waves at the nonconforming grid interface. This problem is solved using a high-
order interpolation, which depends on metric, and a Riemann solver. 
 
 
1. INTRODUCTION 
 
During the last forty years, Computational Fluid 
Dynamics (CFD) has entered industry for the 
design of aircraft or turbomachinery. After solving 
Euler equations in 2D and in 3D with a Finite 
Volume approach, the increase in computational 
power has allowed to solve the Reynolds 
Averaged Navier-Stokes equations. With this 
approach, turbulence effects are averaged and 
only the mean effects are computed. Industrial 
flows are defined at large Reynolds number and 
turbulence must be accounted for. In order to 
capture accurately turbulence effects, the tendency 
was to consider structured meshes and to align 
mesh lines with the flow anisotropy, especially in 
the boundary layer. After thousands of 
computations, industry has been able to propose 
best practices in order to attain the best accuracy 
possible but at a moderate computational cost. In 
other words, the solvers were very accurate once 
the mesh followed some rules. As it has ever been 
suggested, the key point regarding computations 
was the definition of the mesh. Structured solvers 
are numerically very efficient since data are 

accessed easily but the mesh generation is the 
bottleneck. A structured mesh is built by dividing 
the domain of interest in several hexahedral blocks 
(this is called a topology) in which cells are 
referred by a triplet (i, j, k), following the three 
directions defining the hexahedral block. One of 
the most famous mesh tools is called ICEM-CFD 
from Ansys. Initially, even if the mesh 
decomposition may need several days or weeks, 
the fact that the geometry was more or less the 
same (cruise version of an aircraft…) helped 
industries to define best practices for a topology 
and then to discretize the domain from this 
topology. For parametric studies, the global cost 
was acceptable regarding time spent for 
computations. The next tendency consisted in 
computing the flow around an object not at cruise 
conditions. For an aircraft, it means that the 
geometrical complexity is so large that industry is 
not able to afford the expense and several works 
have began in order to simplify the mesh 
generation process. Many approaches have been 
considered: the Chimera method [3], the hybrid 
approach [4], the DRAGON grid [5], the 
unstructured grid [2] and the nonconforming grid 



 

interfaces [6]. The bottleneck of structured mesh 
generation process is the time-consuming topology 
and the fact that mesh lines go across any block 
interface. A solution is simply to authorize a 
parallel human being mesh generation process. 
The idea is simple: the computational domain is 
divided in certain large parts (wing, HTP, VTP, 
fuselage...) separated by predefined surfaces 
added to the CAD. 
 

 
 

Figure 1. Nonconforming grid interface with a high 
coarsening to avoid propagating the mesh lines of 

the wing wake. 
 
Using those surfaces, the initial domain is split into 
several subdomains and any subdomain is 
meshed independently. The principle of non-
matching joins is to authorize two different 
discretizations on both sides of the surface. Hence, 
the zones limits are topologically identical but in 
practice, their discrete representations may differ. 
The final time for mesh generation is obviously 
decreased because several people can work in 
parallel on separated parts of the final mesh. The 
challenge concerns data exchange at the non-
matching join. Our approach consists in defining 
intersection facets and to treat those facets as with 
a classical Finite Volume approach. The key point 
is therefore transferred to the facets definition. A 
geometric algorithm is considered for the definition 
of the facets and in our approach, the treatment is 
conservative once the intersection surfaces are 
planar. A lot of studies about theoretical 
foundations can be found in the literature. Rai [7, 
8, 9] firstly introduced the nonconforming grid 
interface. They were used by Biedron [10] to 
compute the F-18 forebody with actuated control 
strake and by Epstein [19] to compute a generic 
wing. Rumsey [20] used the nonconforming grid 
interface to compute acoustic waves through 
sliding-zone interfaces. Lerat [17] studied their 
stability for the steady compressible Euler 
equations. Nonconforming approach has been 
introduced (historically) as a way to glue two 
domains that share a CAD surface. By essence, it 
was necessary to discretize both sides with 

comparable discretization parameters. But industry 
also found in non-matching interface a good way to 
decrease the computational time of Unsteady 
Reynolds Average Navier-Stokes simulations 
(URANS). In Fig. 1, the nonconforming grid 
interface after the C-grid around the wing allows to 
decrease the number of degrees of freedom. 
Nowadays, this kind of mesh is considered for 
steady polar computations and the industrial 
tendency is to also treat unsteady flows. As an 
example, this kind of mesh can be used to 
compute the gust response, which is clearly an 
unsteady phenomenon. For unsteady simulations, 
nonconforming grid interface are a good way to 
introduce larger cells in the mesh and therefore to 
allow larger time steps. Finally, computation 
robustness is increased while the computational 
cost is decreased. This is important for an industry 
when several hundreds of unsteady computations 
are performed each month. Large Eddy Simulation 
(LES) is the new kind of simulation to enter 
industry. RANS and URANS approaches are not 
able to capture accurately turbulence effects and 
as a consequence turbulence-driven phenomenon. 
LES consists in computing the largest turbulence 
scales and in modelling the lowest scales. The 
largest scales depend on the geometry, while the 
smallest ones are linked with dissipation by 
viscous effects. The largest scale effects are new 
interesting information to add to the industrial 
process. Among the phenomenon of potential 
interest, one can consider the flow at landing or 
take-off conditions, thermal protection system 
design... The main default of nonconforming grid 
interface is that they have been developed for 
steady simulations and simply extended to 
unsteady simulations without analysing their effect 
on unsteady phenomena. This is surprising: many 
efforts concern the measure of temporal and 
spatial accuracy of numerical schemes. But the 
scientific community generally forgets to analyse 
boundary conditions treatment. The aim of the 
present work is to study the nonconforming grid 
interface and its stability when used in unsteady 
simulations (Unsteady Reynolds Averaged Navier-
Stokes, LES with low-order schemes) on multi-
domain and multi-scale meshes. Given the 
success of this numerical method, it was already 
implemented inside the elsA software [23] without 
knowing the limits of the method in unsteady 
simulations (URANS or LES) on multi-domain and 
multi-scale meshes. This analysis must be 
performed theoretically and numerically on a 
simple configuration. In this paper, computations 
with the COnvection VOrtex (CO-VO) test case 
have been carried out. The CO-VO test case 
consists in transporting a vortex by advection and 



 

it is easy to compare numerical and analytical 
reference solutions. The present work is divided 
into three parts. The first one presents the 
theoretical aspects of nonconforming grid 
interface. Analytical expressions are given to study 
stability in unsteady simulations (URANS). The 
second one studies the nonconforming grid 
interface on a non-uniform grid. In certain case, 
one can observe undesirable high-frequency 
waves reflection. Finally, the last one proposes 
solutions to improve significantly the unsteady 
treatment. A lot of solutions are considered in the 
literature to avoid the reflection. The first type of 
method consists in improving the spectral 
resolution. Berland [18] proposed explicit high-
order numerical schemes for the accurate 
computation of multiple-scale problems and for the 
implementation of boundary conditions. Lele [15], 
Kim [16] and Fosso [22] compared compact 
schemes with well-known schemes based on 
Taylor series expansions. Bogey [25] and Tam [24] 
proposed explicit numerical methods by minimizing 
the dispersion and the dissipation errors in the 
wavenumber space (DRP schemes). The aim is to 
compute flow and noise with high accuracy and 
fidelity. The second type of method deals with 
improving the unsteady behaviour of boundary 
conditions. Based on the work of Thompson [21], 
Poinsot and Lele [14] developed the Navier-Stokes 
Characteristic Boundary Conditions, which is a 
Riemann solver. Kim and Lee [27, 28] used them 
to reduce spurious modes at block interfaces. In 
this paper, the unsteady behaviour is improved 
using a high-order interpolation, which depends on 
metric, and a Riemann solver. For further details, 
the reader will refer to [1]. 
 
2. 2D SPECTRAL ANALYSIS 
 
The main aim of this paper is to illustrate a 
theoretical framework to analyse the 
nonconforming grid interface. Since stability 
analysis on the full Navier-Stokes equations is 
difficult, the advection equation with a constant 
velocity is only considered. The spatial derivative 
needs to be discretized. The spectral analysis of 
such interface must be carried out in two 
dimensions because the nonconforming grid 
interface only exists in two dimensions. For sake of 
clarity, the spatial discretization is described using 
the Cartesian toy mesh represented on Fig. 2. This 
latter is composed of two blocks, a right one and a 
left one, separated by a nonconforming grid 
interface. Using the classical Finite Volume 
Method to discretize the partial derivative with 
respect to the x-axis, one obtains Eq. 1. 

∂f
∂x i, j

=
fi+1/2, j − fi−1/2, j

ΔxL
.    (1) 

 
A numerical scheme is then necessary to evaluate 
the value at the interface. A second order scheme 
is used as in [29]. The left state interpolation fi-1/2,j 
is simply given by Eq. 2 since the stencil does not 
cross the interface. 
 

fi−1/2, j =
fi, j + fi−1, j
2

.    (2) 

 

 
 

Figure 2. The toy mesh is composed of two blocks. 
The spatial discretization of the left (resp. right) 

block is (ΔxL,ΔyL) (resp. (ΔxR,ΔyR)). Both blocks are 
separated by the nonconforming block interface. 

 
However, for the right state interpolation, the 
stencil does cross the interface and then, applying 
the numerical scheme is more complicated since 
the flux has to be weighted by the intersection 
surfaces in common between cells: 
 

fi+1/2, j =
MP
MN

fMP +
PN
MN

fPN .   (3) 

 
Then, the second order scheme could be applied 
Eqs. 4-5. 
 

fMP =
fi, j + fi '+1, j '

2
.    (4) 

 

fPN =
fi, j + fi '+1, j '+1

2
.    (5) 

 



 

By injecting Eqs. 2-3-4-5 into Eq. 1, one obtains 
Eq. 6. 
 

∂f
∂x i, j

=
fi+1, j
* − fi−1, j
2ΔxL

.    (6) 

 
where 
 

fi+1, j
* =

MP
MN

fi '+1, j ' +
PN
MN

fi '+1, j '+1.  (7) 

 
Let us assume that f is a normal mode to do a 
spectral analysis where Ι is the imaginary unit. k is 
the wavenumber. kx (resp. ky) is the projection of 
the wave vector on the x- (resp. y-) axis.  
 

fi, j = exp I kxiΔxL + ky jΔyL( )"# $%.  (8) 

 
Substituting Eq. (8) in (7), one obtains Eq. (9). 
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 (9) 

 
This concludes the discretization for the partial 
derivative with respect to the x-axis. The 
discretization along the y-axis is easier since the 
stencil never crosses the nonconforming grid 
interface. So, one classically obtains Eq. 10. 
 

∂f
∂y i, j

=
fi, j+1 − fi, j−1
ΔyL

= Ifi, j sin kyΔyL( ) /ΔyL.
  (10) 

 
In the following, a von Neumann or a Fourier 
analysis is performed to highlight characteristics of 
the nonconforming grid interface in terms of 
amplification and dispersion. Naturally, the 
procedure is described for a cell, which belongs to 
the left block, but the same approach could be 
used to obtain relations for the right block. This is 
why, in the following, the superscript L (resp. R) 
refers to quantities evaluated for the left (resp. 
right) cell. The modified wavenumber along the x- 
(resp. y) axis is defined by Eqs. 11-12. 
 

κ x :=
1
Ifi, j

∂f
∂x i, j

.
 

  (11) 

 

κ y :=
1
Ifi, j

∂f
∂y i, j

.
   

(12) 

 

     
Eqs. 11-12 give two modified wavenumbers κx and 
κy, which is difficult to interpret in terms of 
amplification and dispersion. This is why A and ϕ 
are defined such that A represents dissipation and 
amplification and ϕ represents the dispersion error 
[1]. 
 

A Δx( ) = exp Im κ x +κ z[ ]Δx"# $%.  (13) 

 

ϕ Δx( ) =
kx + ky −Re κ x +κ y( )

π
Δx.  (14) 

 
The functions A and ϕ are defined for all Δx in [0; 
π] to comply the Nyquist-Shannon theorem. The 
dispersion error is given by ϕ and the amplification 
by A. If A > 1, there is amplification and if A < 1, 
there is dissipation. Just remind that amplification 
means instability for the computation. The spectral 
analysis in two-dimension is then simply possible 
by plotting both functions. Since the discretization 
is different for each block, this means that it exists 
an amplification function and a dispersion function 
for the left block (AL, ϕL) and the right block (AR, 
ϕR). If the spatial discretization is different for each 
block, this means that A and ϕ are not defined on 
the same set to comply the Nyquist-Shannon 
theorem. 
 



 

3. STABILITY AND ACCURACY 
 
To confirm the results given by the analytical 
expressions, all computations have been carried 
out with the elsA software [23]. The test case 
deals with the convection of an isentropic and 
compressible vortex inspired by the High-Order 
Workshop [26], which is an analytical solution of 
unsteady compressible Euler equations. The flow 
is initialized with: 
 

u =U0 −βU0 y− yC( ) / RC exp −r2 / 2( ),
v = βU0 x − xC( ) / RC exp −r2 / 2( ),
T = T0 −1/ 2 βU0( )2 exp −r2( ) /Cp,

"

#
$
$

%
$
$

(15) 

 
where p0 = 101325.0 [Pa], T0 = 300.0 [K], M0 = 0.1 
[-], RC = 0.1 [m] and the maximum velocity 
fluctuation umax = 1.5 [m/s]. The vortex reaches its 
maximum of fluctuation of pressure at xC = 0.5 [m] 
and yC = 0.5 [m]. As shown in Fig. 3, the vortex is 
perfectly convected. In this paper, the direction of 
propagation is always orthogonal to the grid 
interface but several tests have been done in [1] 
with a non-orthogonal direction of propagation.  
 

 
 
Figure 3. Coarse reference mesh and its boundary 
conditions (left block 25 x 5 x 50, right block 25 x 5 
x 50). The vortex is convected from the left block to 

the right block. 
 
In this paper, only the coarsening along the x-axis 
is examined. Please see [1] for further details and 
in particular the effect of the coarsening along the 
y-axis and the error analysis. Let us introduce u = 
ΔxR/ΔxL which characterizes the coarsening. A 

spectral analysis have been performed for many 
test cases: u = 1, 2 or 4 and h = 0.0 or 0.5. If h = 
0.0, the grid interface is conforming and the 
coarsening along the x-axis is responsible for 
dispersion and amplification. In general, u > 1 
implies instability. 
 

 
 

Figure 4. Examples of meshes with a 
nonconforming grid interface (h = 0 implies a 
conforming grid interface, h = 0.5 implies a 

nonconforming grid interface) and a coarsening (u 
= 4) along the x-axis. 

Fig. 6 represents the y-component of the velocity 
fluctuation for different coarsening aspect ratio. 
Whether the grid interface is conforming or 
nonconforming, one obtains the same result. 
Instabilities are generated by the coarsening and 
not by the nonconforming interface. The 
coarsening generates a second kind of instabilities. 
It is responsible for high frequency waves 
reflection as shown in Fig. 7. Such a high 
coarsening ratio is often encountered in the 
industry as shown in Fig. 1. This reflection was a 
priori unexpected. Indeed, since the right block is 
coarse, one could expect that the vortex may be 
dissipated but without contamination of the 
upstream flow. This pollution is caused by the high 
coarsening ratio and not by the nonconforming grid 
interface. The only crime of the nonconforming grid 
interface is to allow such high coarsening ratio. 
This phenomenon has been widely studied by 
Vichnevetsky [11, 12, 13], in which wave analysis 
has been performed for one-dimensional problem 
(boundary conditions and mesh refinement). He 
has decomposed any solution as a sum of p and q 
waves, with p waves traveling in the hyperbolic 
direction (positive group velocity) and q waves in 
the opposite direction (negative group velocity). 
The q waves are not necessary present in the flow 
but they can appear in the case of mesh 
coarsening and boundary conditions not adapted. 



 

The metric discontinuity modifies the dispersion 
relation as shown in Fig. 5.  
 

 
 

 
 

Figure 5.  Dispersion and amplification for different 
coarsening ratio u. Solid lines represent the left 
block. Dash lines represent the right block. No 

matter what the value of h is, one obtains the same 
results. 

 

 

Figure 6. Comparison with the elsA software. 
Different values of coarsening ratio along the x-

axis. Similar results are found, whatever the value 
of h. However, a high coarsening ratio implies 

instabilities and dispersion. 

 

 
 
Figure 7. Convection of an isentropic compressible 
vortex through a nonconforming grid interface with 
a high coarsening ration (u = 40) between the well 
refined left block and the coarse right block. High 
frequency waves are reflected by the interface. 

Analogously to electromagnetic waves, a reflected 
wave is created to satisfy the boundary conditions 
(related to the numerical scheme) at the interface 
separating two media of different refractive indices. 
 
 
 
 



 

4. METRIC CORRECTION 
 
The high-frequency waves reflection is totally 
unacceptable since it pollutes the upstream flow, 
which is computed on a well-refined mesh. In this 
section, a method is described to avoid the 
reflection. It is a based on a Riemann solver at the 
interface. Two steps are necessary to implement a 
Riemann solver. The first one, which is the key 
point of the solution, is the metric-dependent third-
order interpolation to evaluate the left and the right 
state at the interface. Then, the second one is the 
Riemann solver based on the Roe’s schemes [30]. 
All the details about this interpolation are given in 
[1]. The left state interpolation is given by: 
 

fi+1/2
L =

9u+1
6 u+1( )

fi +
8

3 u+1( ) u+3( )
fi+1

   

−
3u+1
6 u+3( )

fi−1.
    (15) 

 

 
 
Figure 8. Convection of an isentropic compressible 
vortex through a nonconforming grid interface with 
a high coarsening ration (u = 40) between the well 
refined left block and the coarse right block. The 
vortex is perfectly convected thanks to the metric 

correction. 

 
Since the stencil is not symmetric because of the 
mesh coarsening, the interpolation is not 
symmetric and the right state interpolation is given 
by: 
 

fi+1/2
R =

7u2 −3u+ 6
6u u+1( )

fi+1 +
4u 3−u( )

3 u+1( ) 3u+1( )
fi

  

−
5u2 −3u+ 6
6u 3u+1( )

fi+2.
   (16) 

 
This correction has been implemented inside the 
elsA software and the result is given in Fig. 8.

  
5. CONCLUSION 
 
The aim of the present work was to study the 
nonconforming grid interface and its stability when 
used in unsteady simulations (Unsteady Reynolds 
Average Navier-Stokes, LES with low-order 
schemes) on multi-domain and multi-scale 
meshes. The main default of non-matching joins is 
that they have been developed for steady 
simulations. As seen previously, they cannot be 
simply extended to unsteady simulations without 
any particular precautionary measures. The 
stability of a numerical scheme plays a key role. 
Nobody needed reminding of Lax's theorem which 
ensures the convergence if the numerical scheme 
is stable and consistent. This study was carried out 
through spectral analysis. This kind of study allows 
characterizing the dissipation and the dispersion of 
the numerical scheme, which is essential for 
convecting wave packets for example. This 
analysis was performed theoretically and 
numerically on a simple configuration (CO-VO).  
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